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The R package turboEM implements four methods to accelerate EM and MM algorithms:
SQUAREM [1], Parabolic EM [2], a quasi-Newton algorithm [3], and Dynamic ECME [4].

In the �rst part of this document, we illustrate how to use turboEM to apply the acceler-
ation schemes through an extended example. We show how to (i) apply each state-of-the-art
accelerator using a single function call, (ii) compare the algorithms' solutions and compute
standard errors, (iii) specify di�erent convergence criteria and stopping rules, and (iv) run
the acceleration schemes in parallel in order to make computation fast and e�cient.

In the second part, we illustrate how turboEM may be used as a tool for conducting
benchmark studies to critically compare the acceleration schemes. We show how (i) a bench-
mark study can be run using a simple function call, (ii) the study can be made more e�cient
through parallelization, and (iii) how to apply simple and sophisticated metrics for summa-
rizing and visualizing the benchmark study results.

1 Poisson mixture distribution

First, load the turboEM package into R.

> library(turboEM)

You can get a brief overview of the main function turboem and the associated methods by
typing

> help(package="turboEM")

1.1 Example data

Let's consider a simple example of speeding up the EM algorithm for estimating parameters
of a mixture of two Poisson distributions. Here are data from Hasselblad (1969).
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> poissmix.dat <- data.frame(death=0:9,

+ freq=c(162,267,271,185,111,61,27,8,3,1))

> y <- poissmix.dat$freq

The �xed point mapping of the EM algorithm may be coded as

> fixptfn <- function(p, y) {

+ pnew <- rep(NA,3)

+ i <- 0:(length(y)-1)

+ denom <- p[1]*exp(-p[2])*p[2]^i + (1 - p[1])*exp(-p[3])*p[3]^i

+ zi <- p[1]*exp(-p[2])*p[2]^i / denom

+ pnew[1] <- sum(y*zi)/sum(y)

+ pnew[2] <- sum(y*i*zi)/sum(y*zi)

+ pnew[3] <- sum(y*i*(1-zi))/sum(y*(1-zi))

+ p <- pnew

+ return(pnew)

+ }

The objective function to be minimized (negative log-likelihood) for the Poisson mixture is
given by

> objfn <- function(p, y) {

+ i <- 0:(length(y)-1)

+ loglik <- y*log(p[1]*exp(-p[2])*p[2]^i/exp(lgamma(i+1)) +

+ (1 - p[1])*exp(-p[3])*p[3]^i/exp(lgamma(i+1)))

+ return ( -sum(loglik) )

+ }

1.2 Illustration of basic features of turboem

First, let's use turboem to �t the EM algorithm as well as the acceleration schemes SQUAREM
and Parabolic EM, using the default settings for each algorithm.

> res <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "squarem", "pem"), y=y)

> options(digits=13)

> res

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945860141 1500 1500 1 FALSE 0.062

2 squarem 1989.945859883 23 45 24 TRUE 0.047

3 pem 1989.945859883 25 60 175 TRUE 0.041
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For this problem with this starting guess for the parameter values, the EM algorithm does
not achieve convergence at the default tolerance within the allotted 1500 iterations. On
the other hand, both Parabolic EM and SQUAREM do converge. We'll talk more about
convergence issues, including how to use di�erent convergence rules (or even specify your
own) later on. Even in this simple example, the accelerator algorithms provide a substantial
speed-up.

The turboem function outputs an object of class turbo. Di�erent methods for handling
the output are available, which we will now explore. Let's �rst look at the parameter values
obtained across the three algorithms using the pars method.

> pars(res)

p1 p2 p3

em 0.3600250921611 1.256337900747 2.663574957686

squarem 0.3598853970236 1.256095100582 2.663404357078

pem 0.3598853978517 1.256095082108 2.663404369285

We can also compute the gradient, Hessian, and standard error estimates for the parameter
values.

> options(digits=7)

> grad(res)

[,1] [,2] [,3]

em 2.879504e-03 3.303934e-04 1.946839e-04

squarem 5.475554e-08 -5.702013e-08 3.343641e-08

pem 1.634242e-06 -1.624923e-06 9.649607e-07

> hessian(res)

$em

[,1] [,2] [,3]

[1,] 906.9342 -270.26852 -341.17498

[2,] -270.2685 113.52886 61.68989

[3,] -341.1750 61.68989 192.70637

$squarem

[,1] [,2] [,3]

[1,] 907.1070 -270.22932 -341.26214

[2,] -270.2293 113.48004 61.67877

[3,] -341.2621 61.67877 192.78120
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$pem

[,1] [,2] [,3]

[1,] 907.1070 -270.22933 -341.26214

[2,] -270.2293 113.48004 61.67877

[3,] -341.2621 61.67877 192.78120

> stderror(res)

[,1] [,2] [,3]

em 0.1948801 0.3502387 0.2507439

squarem 0.1948226 0.3502560 0.2506522

pem 0.1948226 0.3502561 0.2506523

We might be interested in exploring the algorithms' histories by plotting the objective func-
tion values over time. Because the default settings of the algorithms do not keep the objective
function values at each iteration (and because not all algorithms require an objective func-
tion to be provided), we must specify that we would like turboem to track these values over
time using the keep.objfval argument of the control parameters.

> res1 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "squarem", "pem"), y=y,

+ control.run=list(keep.objfval=TRUE))

> res1

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.946 1500 1500 1501 FALSE 0.056

2 squarem 1989.946 23 45 24 TRUE 0.005

3 pem 1989.946 25 60 175 TRUE 0.004

> plot(res1, xlim=c(0.001, 0.02))
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Up until this point, we have not considered the Dynamic ECME acceleration scheme.
Dynamic ECME requires an additional input in order to run. For Dynamic ECME, we
must specify the subspace over which line searches will be conducted, which is done through
a boundary function. For this example, the function de�ning the subspace for a given
parameter value par and a given search direction dr is given by

> boundary <- function(par, dr) {

+ lower <- c(0, 0, 0)

+ upper <- c(1, 10000, 10000)

+ low1 <- max(pmin((lower-par)/dr, (upper-par)/dr))

+ upp1 <- min(pmax((lower-par)/dr, (upper-par)/dr))

+ return(c(low1, upp1))

+ }

We may now use turboem for the Dynamic ECME algorithm.

> res2 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ boundary=boundary, method="decme", y=y)

> options(digits=13)

> res2

method value.objfn itr fpeval objfeval convergence elapsed.time

1 decme 1989.945859883 32 32 157 TRUE 0.037
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For some problems, an objective function may not be available. Only SQUAREM and
EM do not require an objective function to be provided. The other algorithms (parabolic
EM, quasi-Newton, and Dynamic ECME) will produce an error message if no objective
function is given.

> res3 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, boundary=boundary, y=y)

> res3

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em NA 1500 1500 0 FALSE 0.029

2 squarem NA 12 71 0 TRUE 0.057

Acceleration scheme 3 (pem), 4 (decme), 5 (qn) failed

If we did not know the reason certain algorithms failed, we can call the error method to
�nd out.

> error(res3)

method 3 (pem): Error in accelerate(par = par, fixptfn = fixptfn, objfn = objfn, boundary = boundary, : objfn required for method = 'pem'

method 4 (decme): Error in accelerate(par = par, fixptfn = fixptfn, objfn = objfn, boundary = boundary, : objfn required for method = 'decme'

method 5 (qn): Error in accelerate(par = par, fixptfn = fixptfn, objfn = objfn, boundary = boundary, : objfn required for method = 'qn'

In certain circumstances, quasi-Newton may produce invalid parameter values (e.g. values
outside the parameter space). For example, if we use as a starting value a point near the
boundary of the parameter space, quasi-Newton will produce an error:

> res4 <- turboem(par=c(0.9, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ boundary=boundary, y=y)

> res4

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945868319 1500 1500 1 FALSE 0.028

2 squarem 1989.945859883 32 63 33 TRUE 0.007

3 pem 1989.945859883 25 60 183 TRUE 0.008

4 decme 1989.945859883 37 37 182 TRUE 0.007

Acceleration scheme 5 (qn) failed

Invalid parameter values at a particular iteration of quasi-Newton typically yields the fol-
lowing error message
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> error(res4)

method 5 (qn): Error in if (l2 < lnew) {: missing value where TRUE/FALSE needed

One way to rectify this problem is to include the pconstr argument, which de�nes the
bounds of the parameter space.

> pconstr <- function(par) {

+ lower <- c(0, 0, 0)

+ upper <- c(1, Inf, Inf)

+ return(all(lower < par & par < upper))

+ }

> res5 <- turboem(par=c(0.9, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ boundary=boundary, y=y, pconstr=pconstr)

> res5

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945868319 1500 1500 1 FALSE 0.028

2 squarem 1989.945859883 32 63 33 TRUE 0.009

3 pem 1989.945859883 25 60 183 TRUE 0.005

4 decme 1989.945859883 37 37 182 TRUE 0.007

5 qn 1989.945859883 29 33 57 TRUE 0.003

1.3 Convergence criteria and alternative stopping rules

Stopping criteria for each algorithm may be speci�ed through the control.run argument.
Default values of control.run are:

convtype = "parameter",

tol = 1.0e-07,

stoptype = "maxiter",

maxiter = 1500,

maxtime = 60,

convfn.user = NULL,

stopfn.user = NULL,

trace = FALSE,

keep.objfval = FALSE.

There are two ways the algorithm will terminate. Either the algorithm will terminate if
convergence has been achieved, or the algorithm will terminate if convergence has not been
achieved within a pre-speci�ed maximum number of iterations or maximum running time
(alternative stopping rule). At each iteration for each acceleration scheme, both the conver-
gence criterion and the alternative stopping rule will be checked. The arguments convtype,
tol, and convfn.user control the convergence criterion. The arguments stoptype, maxiter,
maxtime, and stopfn.user control the alternative stopping rule.
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1.3.1 Convergence criteria

Two types of convergence criteria have been implemented, as well as an option for a user-
de�ned criterion. If convtype = "parameter" (the default setting), then the default con-
vergence criterion is to terminate at the �rst iteration n satisfying{

K∑
k=1

(p
(n)
k − p

(n−1)
k )2

}1/2

< tol,

where p
(n)
k denotes the kth element of the �xed-point value p at the nth iteration. For

example, to use this convergence criterion with a tolerance of 10−10, specify the control.run
argument as

> res6 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-10))

> res6

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945860141 1500 1500 1 FALSE 0.029

2 pem 1989.945859883 34 78 193 TRUE 0.005

3 squarem 1989.945859883 25 49 26 TRUE 0.006

To use a convergence criterion based on the objective function value at each iteration, you
can specify convtype = "objfn". Then the algorithm will terminate at the �rst iteration n
such that ∣∣L(parn)− L(parn−1)

∣∣ < tol.

Here we use this convergence criterion with a tolerance of 10−10:

> res7 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-10, convtype="objfn"))

> res7

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945860141 1500 1500 1501 FALSE 0.034

2 pem 1989.945859883 19 48 136 TRUE 0.004

3 squarem 1989.945859883 22 43 23 TRUE 0.005

If you would like to use a di�erent convergence criterion than these two options, you can
de�ne your own. To do this, de�ne the convfn.user argument as a function with inputs
new and old that maps to TRUE if convergence is achieved and maps to FALSE otherwise. For
example, for convergence at the �rst iteration n where max{

∣∣parn − parn−1

∣∣} < 10−10, you
may specify control.run as
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> convfn.user <- function(old, new) {

+ max(abs(new-old)) < tol

+ }

> res8 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-10, convfn.user = convfn.user))

> res8

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945860141 1500 1500 1 FALSE 0.031

2 pem 1989.945859883 33 76 191 TRUE 0.005

3 squarem 1989.945859883 25 49 26 TRUE 0.005

Note that here, because we did not specify the convtype argument, turboem uses the default
option of parameter-based convergence. In other words, turboem assumes that the old and
new arguments of convfn.user refer to the parameter values parn−1 and parn, respectively.

For another example, if you would like to set the convergence criterion to be

|L(parn)− L(parn−1)|
|L(parn−1)|+ 1

< 10−8,

then the convfn.user argument of control.run may be speci�ed as follows

> convfn.user.objfn <- function(old, new) {

+ abs(new - old)/(abs(old) + 1) < tol

+ }

> res9 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-8, convtype="objfn",

+ convfn.user = convfn.user.objfn))

> res9

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.948186528 447 447 448 TRUE 0.011

2 pem 1989.946009291 7 24 49 TRUE 0.002

3 squarem 1989.945859912 16 31 17 TRUE 0.003

1.3.2 Alternative stopping rules

Two types of alternative stopping rule have been implemented, as well as an option for a
user-de�ned rule. If stoptype = "maxiter" (the default setting), then the algorithm will
terminate if convergence has not been achieved within maxiter iterations of the acceleration
scheme. If you set stoptype = "maxtime", then the algorithm will terminate if convergence
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has not been achieved within maxtime seconds of running the acceleration scheme. Note that
the running time of the acceleration scheme is calculated once every iteration. For example,
the code

> res10 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-15, stoptype="maxtime",

+ maxtime=10))

> res10

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945859883 6318 6318 1 TRUE 0.122

2 pem 1989.945859883 1013 2036 2322 TRUE 0.069

3 squarem 1989.945859883 48 94 49 TRUE 0.012

imposes a strict tolerance for convergence, but it allows each algorithm up to 10 seconds to
run.

If you would like a di�erent stopping rule than these, you may specify the stopfn.user
argument of control.run. To do this, de�ne stopfn.user as a function with no inputs
that maps to TRUE when the algorithm should be terminated and maps to FALSE otherwise.
For example, if you would like the algorithm to stop when either the number of iterations
reaches 2000 or the running time exceeds 0.2 seconds, you can specify

> stopfn.user <- function() {

+ iter >= maxiter | elapsed.time >= maxtime

+ }

> res11 <- turboem(par=c(0.5, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y,

+ control.run=list(tol=1.0e-15, stopfn.user=stopfn.user,

+ maxtime=0.2, maxiter=2000))

> res11

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945859886 2000 2000 1 FALSE 0.040

2 pem 1989.945859883 1013 2036 2322 TRUE 0.066

3 squarem 1989.945859883 48 94 49 TRUE 0.010

1.4 Changing default con�gurations of acceleration schemes

Each of the general acceleration schemes (SQUAREM, Parabolic EM, Dynamic ECME,
and Quasi-Newton) has di�erent variants and choices for various tuning parameters. For
example, we might wish to compare higher-order SQUAREM algorithms (e.g. K = 2 or
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K = 3), consider di�erent values for the qn parameter in the quasi-Newton class of schemes,
or use a di�erent version of the Dynamic ECME scheme. It's very easy to change the
algorithms' default speci�cations in turboem.

In the next code chunk, we compare the EM algorithm to the following accelerators:
SQUAREM with K = 2 and K = 3, Dynamic ECME versions 2 and 2s, quasi-Newton
with qn = 1 and qn = 2, and Parabolic EM versions �arithmetic� as well as the default
�geometric�. To do this, we will utilize the control.method argument.

> res12 <- turboem(par = c(0.9, 1, 3), fixptfn=fixptfn, objfn=objfn,

+ boundary=boundary, pconstr=pconstr,

+ method=c("em", "squarem", "squarem", "decme", "decme",

+ "qn", "qn", "pem", "pem"),

+ control.method=list(list(), list(K=2), list(K=3),

+ list(version=2), list(version="2s"),

+ list(qn=1), list(qn=2),

+ list(version="arithmetic"), list(version="geometric")),

+ y=y)

> res12

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945868319 1500 1500 1 FALSE 0.030

2 squarem 1989.945859883 12 61 13 TRUE 0.055

3 squarem 1989.945859883 9 64 10 TRUE 0.004

4 decme 1989.945859883 21 21 463 TRUE 0.005

5 decme 1989.945859883 37 37 182 TRUE 0.007

6 qn 1989.945859883 100 103 199 TRUE 0.009

7 qn 1989.945859883 29 33 57 TRUE 0.003

8 pem 1989.945859883 27 64 491 TRUE 0.013

9 pem 1989.945859883 25 60 183 TRUE 0.005

1.5 Parallelization of turboem

Up until this point, when we ran turboem, each of the accelerations schemes were run
sequentially. If you have access to multiple cores within a computer or multiple computers,
you may wish to run the accelerators in parallel. Parallelization has been implemented in
turboEM through the foreach package.

There are two steps to running the algorithms in parallel

1. Register a parallel backend.
2. Set the argument parallel = TRUE in turboem.

The parallel backend is the method of parallelization, and which parallel backend you
use will depend on your computing environment. Some of the parallel backends available
include
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� doParallel: This package is a parallel backend for the foreach package and it allows
multiple computers and multiple cores within a computer. It is supported on Mac,
Unix/Linux, and Windows machines.

� doMC: Based on the multicore package, this backend uses multiple cores on a single
machine. It is currently supported by Mac or Unix/Linux operating systems.

� doMPI: Based on the Rmpi package, this method works on clusters of computers with
Message Passing Interface (MPI) installed.

In addition to looking at the vignettes for each of the backends, another useful overview for
parallel computing with foreach can be found here.

As an example, here we run turboem using the doParallel backend. First we register
the backend:

> library(doParallel)

> cl <- makeCluster(2)

> registerDoParallel(cl)

Now we run turboem.

> time.parallel <- system.time(res.parallel <-

+ turboem(par=c(0.9, 1, 6), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y, parallel=TRUE,

+ control.run=list(tol=1.0e-14, stoptype="maxtime",

+ maxtime=10)))

> res.parallel

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945859883 6262 6262 1 TRUE 0.173

2 pem 1989.945859883 1442 2894 3297 TRUE 0.169

3 squarem 1989.945859883 76 151 77 TRUE 0.054

> time.parallel

user system elapsed

0.007 0.000 1.161

Then for doParallel we must stop the cluster:

> stopCluster(cl)

This computer has 2 cores available for use (although here only 3 of the cores were used�one
for each acceleration scheme).

We can compare the computation time to running the algorithms sequentially.
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> time.sequential <- system.time(res.sequential <-

+ turboem(par=c(0.9, 1, 6), fixptfn=fixptfn, objfn=objfn,

+ method=c("em", "pem", "squarem"), y=y, parallel=FALSE,

+ control.run=list(tol=1.0e-14, stoptype="maxtime",

+ maxtime=10)))

> res.sequential

method value.objfn itr fpeval objfeval convergence elapsed.time

1 em 1989.945859883 6262 6262 1 TRUE 0.116

2 pem 1989.945859883 1442 2894 3297 TRUE 0.092

3 squarem 1989.945859883 76 151 77 TRUE 0.016

> time.sequential

user system elapsed

0.211 0.016 0.227

While each of the individual algorithms took longer to run in parallel due to the overhead
of communicating across multiple cores, running the algorithms in parallel led to an overall
speed-up of a factor of 0.2.

For the small example we have considered here, the gain in running the schemes in parallel
is quite trivial, since the algorithms do not take very long to run in the �rst place. More
complex examples will yield much greater gains. See, for example, the results of a benchmark
study in Section (2.3) that demonstrates the value of parallel execution.

Note that if your goal is to compare computation times of various acceleration schemes,
you probably should not use the option parallel = TRUE in turboem. If some of the com-
puters/processors over which the work is split are less powerful than others, any di�erence
in computation times could be due to computing power rather than to di�erences among
algorithms. If you'd like to compare the algorithms' performance, turboEM provides several
useful tools for conducting benchmark studies. We'll show how they work in the next section.

2 Conducting benchmark studies

Let's use turboEM to conduct a small benchmark study to compare EM accelerators for our
Poisson mixture example.

For each of r = 1, . . . , NREP repetitions, we will randomly simulate a starting value par(r).
Then we'll apply each of the EM accelerators, beginning at that starting value, and we'll
compare results across repetitions using the summary and visualization tools implemented
in turboEM.
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2.1 Control parameters

Because each of the acceleration schemes has di�erent variants and control parameters,
we'll �rst create a list containing the control parameters for each of the schemes we'll be
considering.

> method.names <- c("EM", "squaremK1", "squaremK2", "parabolicEM",

+ "dynamicECME", "quasiNewton")

> nmethods <- length(method.names)

> method <- c("em", "squarem", "squarem", "pem", "decme", "qn")

> control.method <- vector("list", nmethods)

> names(control.method) <- method.names

> control.method[["EM"]] <- list()

> control.method[["squaremK1"]] <- list(K=1)

> control.method[["squaremK2"]] <- list(K=2)

> control.method[["parabolicEM"]] <- list(version="geometric")

> control.method[["dynamicECME"]] <- list(version="2s")

> control.method[["quasiNewton"]] <- list(qn=2)

We'll also set the control parameters for stopping the algorithm, including the convergence
criterion and alternative stopping rule (setting the maximum runtime or number of itera-
tions).

> control.run <- list(tol=1e-7, stoptype="maxtime", maxtime=2,

+ convtype="parameter")

2.2 Starting values

Now, let's generate the starting values par(r), r = 1, . . . , NREP. If we set the seed prior to
generating the starting values, then our benchmark study results can be reproduced.

> NREP <- 100

> library(setRNG)

> test.rng <- list(kind = "Mersenne-Twister",

+ normal.kind = "Inversion", seed = 1)

> setRNG(test.rng)

> starting.values <- cbind(runif(NREP),runif(NREP,0,4),runif(NREP,0,4))

> head(starting.values, 3)

[,1] [,2] [,3]

[1,] 0.2655086631421 2.618895712309 1.0700328294188

[2,] 0.3721238996368 1.412789087743 0.8745811395347

[3,] 0.5728533633519 1.081040583551 2.0671873455867
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2.3 Execute benchmark study using simple call

The turboSim function may be used to run the benchmark study.

> simtime <- system.time(

+ results <- turboSim(parmat=starting.values, fixptfn=fixptfn,

+ objfn=objfn, method=method, boundary=boundary,

+ pconstr=pconstr, method.names=method.names,

+ y=y, control.method=control.method,

+ control.run=control.run)

+ )

> simtime

user system elapsed

6.725 0.397 7.122

Note that all of the inputs to turboSim() are identical to those in the turboem function,
except parmat is a matrix of starting parameter values, where each row corresponds to a
single simulation iteration, and method.names is a new argument containing the unique
names that can identify the methods being compared.

There is also the ability to run the benchmark study in parallel over multiple cores
or computers, with parallelization implemented using the foreach package that we talked
about earlier (Section 1.5). It is important that all of the algorithms are run on the same
processor for a given repetition, in case some of the processors/computers are less powerful
than others. Therefore, in turboSim() we parallelize across simulation repetitions, rather
than across acceleration schemes as in turboem(). As above, let's use the doParallel

parallel backend in order to compare the total computation time of our benchmark study
when multiple cores are used. Let's see how much faster we can get.

> cl <- makeCluster(2)

> simtime.par <- system.time(

+ results.par <- turboSim(parmat=starting.values, fixptfn=fixptfn,

+ objfn=objfn, method=method, boundary=boundary,

+ pconstr=pconstr, method.names=method.names,

+ y=y, control.method=control.method,

+ control.run=control.run, parallel=TRUE)

+ )

> simtime.par

user system elapsed

0.125 0.011 6.267

> stopCluster(cl)
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Here, running the algorithm in parallel over 2 cores yielded a substantial speed-up of a factor
of 1.14.

2.4 Results

The turboSim function produces an object of class turbosim. Let's now explore the di�erent
methods that will help us summarize and visualize the results of our benchmark study.

> class(results)

[1] "turbosim"

> results

Benchmark study over 100 repetitions.

Methods:

1. EM

2. squaremK1

3. squaremK2

4. parabolicEM

5. dynamicECME

6. quasiNewton

Functions to summarize and visualize results:

summary(), boxplot(), dataprof(), pairs()

The method summary prints a table of the number of failures across acceleration schemes.
Three types of failures are considered.

1. An error message is produced by the algorithm.

2. The algorithm does not converge prior to the alternative stopping rule (maximum
number of iterations or running time) being reached.

3. The convergence criterion has been satis�ed but the value of the objective function is
�far� from the best achievable value.

To assess the third type of failure, we determine whether the objective function value achieved
by the algorithm is close (within a pre-speci�ed value, eps) to the smallest value achieved
across all algorithms at that iteration. Let's look at the types of failures encountered by the
algorithms for our study.
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> summary(results, eps=0.01)

Algorithm failed Exceeded 0.03 min. objfn > min(objfn) + 0.01

EM 0 0 0

squaremK1 0 0 0

squaremK2 0 0 21

parabolicEM 0 0 0

dynamicECME 0 0 0

quasiNewton 0 0 0

Alternatively, say we knew somehow that the global minimum of the objective function for
this problem were sol = 1989.945859883. Then we could de�ne the third type of failure
as occurring when the objective function value achieved by the algorithm is more than eps

units greater than sol, and we could summarize the failures using

> summary(results, eps=0.01, sol=1989.945859883)

Algorithm failed Exceeded 0.03 min. objfn > min(objfn) + 0.01

EM 0 0 0

squaremK1 0 0 0

squaremK2 0 0 21

parabolicEM 0 0 0

dynamicECME 0 0 0

quasiNewton 0 0 0

The boxplot method shows boxplots of the running time across simulation iterations for
each acceleration scheme. To exclude results from the iterations where there were failures,
you can use the whichfail argument. For example, we can exclude the 21 iterations for
which squaremK2 did not achieve an objective function close to the best possible value at
that iteration.

> fails <- with(results, fail | !convergence |

+ value.objfn > apply(value.objfn, 1, min) + 0.01)

> boxplot(results, whichfail=fails)
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The default setting for whichfail in boxplot, as in the other methods for the turbosim

class, excludes those simulation iterations for which either the algorithm produced an error
or convergence was not achieved (failure types 1 and 2).

The dataprof method shows the estimated distribution function of the time until conver-
gence (T ) for each acceleration scheme. We set Ti,j = ∞ for those iterations i where algorithm
j failed, where failures are speci�ed using the whichfail argument of dataprof().

> dataprof(results)
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Finally, to visualize pairwise comparisons of the running time across algorithms at each
iteration, we implement the pairs method which displays a scatterplot matrix of the run
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times. For this method, as with the other methods, we can specify which of the algorithms
will be shown in the results by specifying which.methods.

> pairs(results, which.methods=1:4, cex=0.8, whichfail=fails)
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Rather than ignore points where one of the pair of algorithms failed, we plot those points
along the far right or topmost part of the plot. For example, for those iterations where
squaremK2 failed, we set the running time for those iterations to the maximum running time
of squaremK2 across iterations, and we color-coded the point as having a greater running
time as compared to the algorithm that did not fail. The scatterplots also include the robust
linear regression �t (using the L1 norm) constrained so that the intercept is 0.

3 Conclusion

The turboEM package provides a uni�ed implementation of acceleration schemes, which can
be used o�-the-shelf for any EM or MM problem. Here we have explored a small example
to give you an overview of the di�erent features of turboEM. You can specify one of the
implemented convergence criteria and alternative stopping rules or you can de�ne your own.
You can run the algorithms in parallel to speed up computation time, and the parallel
implementation works over a wide range of computing environments with little modi�cation.
Several methods are provided to allow output to be examined, displayed and summarized.
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In addition, you can systematically compare the performance of the acceleration schemes
by conducting a benchmark study, which can also be run in parallel. Finally, results from
benchmark studies can be explored and presented through a suite of visualization methods.
We hope that this package will enable researchers and applied scientists to easily use state-of-
the-art EM accelerators and to critically evaluate the relative performances of the approaches
across a wide range of optimization problems.
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